
Virtual Threads

Virtual Threads:
Lightweight Concurrency

for Everyone

Virtual Threads - The Problem

Traditional Threads

● Java threads = OS threads (1:1 mapping)

● OS threads = expensive (memory + context switching)

● Thread-per-request style = simple, but doesn’t scale

🛑 Result: Throughput capped by OS thread limits

Virtual Threads - Workaround Before Virtual Threads

Async / Reactive Programming

● Non-blocking APIs + callbacks (CompletableFuture, reactive frameworks)

● Better scalability but…

○ ❌ Harder to read (no loops, try/catch)

○ ❌ Debugging and profiling painful

○ ❌ Stack traces lose meaning

Virtual Threads - Enter Virtual Threads 🚀

What they are:

● Instances of java.lang.Thread

● M:N scheduling: Many (M) virtual threads mapped to fewer (N) OS threads

● Lightweight, cheap, and plentiful

📌 Analogy: Like OS “virtual memory”, but for threads

Virtual Threads - Goals 🎯

● Keep the thread-per-request model

● Near-optimal hardware utilization

● Compatible with existing code (ThreadLocal, debugging, profiling)

● No new programming model to learn

Virtual Threads - Using Virtual Threads (Example)

try (var executor = Executors.newVirtualThreadPerTaskExecutor()) {

 IntStream.range(0, 10_000).forEach(i ->

 executor.submit(() -> {

 Thread.sleep(Duration.ofSeconds(1));

 return i;

 })

);

}

✅ 10,000 concurrent tasks → runs fine

❌ 10,000 OS threads → likely crash

Virtual Threads - When to Use?

Best for high concurrency I/O-bound tasks (HTTP calls, DB queries, etc.)

Not faster than platform threads → they give scale, not speed

Don’t pool virtual threads — create one per task!

Virtual Threads - Observability 🔍

Virtual threads = fully supported by tooling

Debuggers, profilers, JFR

New thread dumps grouped by task

JSON export via jcmd

Virtual Threads - The Pinning Issue (Java 21 → 23)

● Virtual threads could get pinned (stuck to carrier OS thread):

○ Inside synchronized blocks

○ Native calls / FFM API

⚠ Pinned thread = carrier blocked → scalability suffers

Workarounds:

● Replace synchronized with ReentrantLock

● Monitor with -Djdk.tracePinnedThreads or JFR events

Virtual Threads - Java 24 Fix: JEP 491 🎉

Synchronize Virtual Threads Without Pinning

● Virtual threads can now acquire/release monitors independently of carriers

● ✅ synchronized no longer causes pinning

● ✅ ConcurrentHashMap and many libraries safe

● 🗑 -Djdk.tracePinnedThreads removed → not needed anymore

● Monitoring only needed for native calls

Virtual Threads - Forgive synchronized ❤

In 2023: “Avoid synchronized, use locks!”

In 2025: “Use the best tool for the job”

JEP 491 officially says: choose between synchronized and
ReentrantLock
 based on semantics, not pinning fears

Virtual Threads - Key Takeaways ✅

Virtual threads = simple + scalable concurrency

Ideal for server apps (thread-per-request style preserved)

Tooling ready: debugging, JFR, thread dumps

Java 24: pinning issue solved

Java 25: Virtual threads are mature and production-ready

